
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812625 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1512

HASHDIC : AN EFFICIENT APPROCH FOR

FREQUENT ITEMSET MINING

1Krishna H. Odedara, 2Dr.Vipul Vekariya, 3Prof.Daxa V. Vekariya
1P.G. Student, 2Associate Professor, 3Assistant Professor

1Computer Department,
1Noble group of Institution, Junagadh, India

 Abstract : Association rule mining is used for finding frequent itemset form the Transaction database. There are many efficient algorithm

used for finding support of the itemset which denote that itemset is frequent or not. From that algorithm. Eclat algorithm is used

intersection for the support counting but it give low efficiency when number of transaction are large. In our algorithm considers the

DIC(variation of apriori) approach it reduce the number of passes made over the transaction database. DIC maintains four itemsets dashed

circle, dashed box, Solid circle and solid box for calculating the frequent itemset And used hash based technique for reduce the size of

candidate itemsets. Using Hash based technique at that time collision sometime occur but overcome this problem by rehashing technique .

Besides other efficiency improving methods the DIC give confirmed frequent itemset form transactional dataset and compare to other

algorithm our proposed algorithm require less time.

IndexTerms - frequent itemset, transactional database, DIC, Hash Technique

 Introduction

Association rule mining was introduced by Agrawal, and initially used in large-scale transaction data recorded in supermarket to

discovering interesting relations between variables in large databases. There are some efficient algorithms uses the downward-closure

property of support which guarantees that for a frequent itemset. For example, one of properties used by the Apriori algorithm is that

all subsets of a frequent itemset must also be frequent. Finding association rules is the core process of data mining and it is the most

popular technique has been studied by many researchers.. It is mining for association rules in database of sales transactions between

items which is important field of the research in dataset .Using different algorithm through finding frequent itemset from large

transactional dataset.

Frequent itemset mining has wide applications. The research in this field is started many years before but still emerging. This is a

part of many data mining techniques like association rule mining, classification, clustering, web mining and correlations. The same

technique is applicable to generate frequent sequences also. In general, frequent patterns like tree structures, graphs can be generated

using the same principle. There are many applications where the frequent itemset mining is applicable. In short, they can be listed as

market-basket analysis, bioinformatics, networks and most in many analyses.

In this paper we uses minhash technique for finding frequent itemset. And using bucket address provide the address space to that

frequent itemset. .And using Rehashing technique resolves the collisions that are encountered during various collision resolution

techniques used in open addressing starategy.This is done by increasing the size of a hash table, and restoring all of the items into the

hash table using the hash function h(k)=k%m where m is the new length of the hash table after increasing it..And also used dynamic

counting method for adding item dynamically if required.

I. BACKGROUND

2.1 Minhash Technique

A hash table (hash map) is a data structure used to implement an associative array, a structure that can map keys to values. A

hash table uses a hash function to compute an index into an array of buckets or slots, from which the correct value can be found. Hash

functions are primarily used in hash tables, to quickly locate a data record given its search key. Hash technique through finding the

bucket address and put that itemset on that index.But whenever collisions occur after mapping the frequent item sets then an immediate

check for the number of buckets still vacant in the hash table must be done. If it is observed that the hash table is either half –filled or is

more than half of the size of the hash table is occupied then it is appropriate to apply rehashing technique using which we can double

the size of the hash table thus providing enough buckets for all frequent item sets without any collisions.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812625 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1513

2.2 Rehashing Technique

Rehashing is a technique used in hash tables to overcome hash collisions, when two different values to be searched for

producing the same hash key. It is a popular collision resolution technique used on hash tables. Like linear probing ,it uses one hash

value as a starting point and then repeatedly steps forward an interval ,until the desired value is located; an empty location is reached ,

or the entire table has been searched. .In Linear probing, Quadratic probing and Double hashing, we have to guess the number of

elements we need to insert into a hash table.

2.3 Dynamic Itemset Counting

This is an alternative to Apriori Itemset Generation. In this itemsets are dynamically added and deleted as transactions are

read. It is based on the downward release property in which this calculates the itemsets to different point of time regarding the scan.

This algorithm also used to ease the number of database for discovering the frequent itemsets by just counting the new element at any

fact of time finished the run time

DIC maintains four sets of itemsets, namely Dashed Circle,Dashed Box, Solid Circle and Solid Box. Itemsets in the“dashed”

sets are subjects for support counting while itemsetsin the “solid” sets do not need to be counted. “Circles” contain infrequent itemsets

while “boxes” contain frequent itemsets.

II. PROPOSED WORK

In general the structure of the transactional database may be in two different format – Horizontal data format and Vertical data

format. In this paper, transactions of database are stored in the vertical format. Vertical data format ,an “Item: TID” format in which

“TID” is unique identifier for of a transaction and “Item” is an item in database.

In this paper, We use hash based technique for providing bucket address to frequent mining itemset. But sometime collision occur

because size of hash table is less than the required size.so avoid this problem we use hash method. It can be used to increase the size of

a hash table, and restoring all of the items into the hash table using the hash function h(k)=k%m where m is the new length of the hash

table after.And this paper we also use DIC method for add any no. of transaction in given database when required, which possible using

dynamic itemset counting method.

A frequent itemset is an itemset that occurs frequently. In frequent pattern mining check itemset occurs frequently or not. Find

frequent itemset from the given dataset check count support of itemset. If count support is greater than or equal to the min support then

that itemset is frequent otherwise not frequent. Different methods used for frequent itemset mining. Here,use Hash & DIC method.

The steps for HashDIC algorithm is as follows:

 Apply DIC Technique to dataset.

 Get no. of unique items from the dataset.

 Get frequent mining itemset from given database.

 If collision occur then apply Hash technique and then get frequent itemset.

 Calculate Execution time require for finding frequent itemset

III. EXPERIMENT

 We apply the experiments on two fimi datasets : 1)Online retail dataset 2) T40I10D100K dataset which have been commonly used

for many frequent itemsets mining algorithms.

Here we use parameter for speed of HashDIC algorithm. Proposed algorithm give more spped compare to other algorithm.

Comparision of the results can be show in the graph. Compare to Apriori and éclat algorithm HashDIC require less time.We perform

our experiment in eclipse using java language. Java is purely object oriented language. Object oriented programming is a method of

implementation in which programs are organized as cooperative collection of objects, each of which represents an instance of a class,
and whose classes are all members of a hierarchy of classes united via inheritance relationship.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812625 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1514

Fig 1: Comparison of HashDIC,Apriori and Eclat speed on Online retail dataset

No. of
Records Apriori(Time) Eclat(Time)

HashDIC(Time)

10000 29306 16359 14720

20000 54896 48751 40473

30000 105854 83659 67953

40000 133702 126100 82177

50000 197020 172821 113031

TABLE I. Information of test online retail dataset

 Fig 2: Comparison of HashDIC,Apriori and Eclat speed on T40I10D100K dataset

0

50000

100000

150000

200000

250000

10000 20000 30000 40000 50000

Ti
m

e
(m

ill
is

e
c.

)

No. Of Records

Online Retail Dataset

Apriori

Eclat

HashDIC

0

5000

10000

15000

20000

25000

30000

35000

40000

1000 2000 3000 4000 5000

Ti
m

e
(m

ill
is

e
c.

)

No.of Records

Dataset -T40I10D100K

Eclat

Apriori

HashDIC

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812625 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1515

 TABLE II. Information of test T40I10D100K Dataset

IV. CONCLUSION

In this work, we proposed an approach to find frequent itemset using dynamic itemset counting & hashing method . Here, We

presented the frequent itemset finding using DIC technique .And put that itemset in their bucket address but some collision occur due to

one key put at same location.Our method we can overcome this collision problem using hashing technique through and get the unique

bucket address for each frequent mining itemset. And finding the no. of unique items from the dataset and calculate the execution time

for frequent itemset mining.And proposed algorithm is faster than the comparing to other algoithmFor the further improvement ,some

other optimization methods can also be used to try in our framework.

ACKNOWLEDGMENT

I would like to express my sincere thanks to my guide Daxa V.Vekriya professor ,Computer department, for her vital support,

valuable guidance and for providing me with all facility and guidance for presenting assisting me in times of need. I would also take

this opportunity to express my heartfelt gratitude to Professor Ashutosh Abhangi, Head of the Department of Computer Engineering,

for his valuable support and cooperation in the presentation of this paper.

REFERENCES

1) Chunkai Zhang , Xudong Zhang , Panbo Tian ,” An approximate approach to frequent itemset mining” 2017 IEEE

Second International Conference on Data Science in Cyberspace INSPEC Accession Number: 17098630 DOI -10.1109
/DSC 2017 .60

2) Hao Jiang and Xu He “An Improved Algorithm for Frequent Itemsets Mining” 2017 IEEE fifth international conference on
advanced cloud and big data (CBD) INSPEC Accession Number: 17153579 DOI-10.1109/CBD 2017.61

3) Junrui Yang , Yingjie Zhang , Yanjun Wei “An Improved Vertical Algorithm for Frequent Itemsets Mining From Uncertain
Database” IEEE 2017 9th international conference on Intelligent Human Machine Systems and Cybernetics INSPEC
Accession Number: 17207441 ISBN: 978-1-5386-3022-8 DOI-10.1109/ IHMSC 2017.87

4) Mazaher Ghorbani and Masoud Abessi “A New Methodology for Mining Frequent Itemset On Temporal Data.”IEEE
Transaction on Engineering Management Volume: 64 INSPEC Accession Number: 17259900 DOI-10.1109/TEM
.2017.2712206.

5) Sagar Bhise and Prof. Sweta Kale” An Efficient Algorithms To Find Frequent Itemset Using Datamining” International
Research Journal of Engineering and Technology (IRJET) Volume: 04 Issue: 06 | June -2017. e-ISSN: 2395 -0056 ,p-ISSN:
2395-0072

6) O.Jamsheela, Raju.G, "Frequent Itemset Mining Algorithms :A Literature Survey", 2015 IEEE International Advance
Computing Conference (IACC)

7) Wang L, Cheung D W, Cheng R, et al. Efficient Mining of Frequent Item Sets on Large Uncertai Databases[J]. Knowledge
& Data Engineering IEEE Transactions on, 2012, 24(12):2170-2183.

8) R. Agrawal, T. Imieli´nski, and A. Swami, “Mining association rules between sets of items in large databases,” ACM
SIGMOD Rec., vol. 22, no.2, pp. 207–216, 1993

9) Aakansha Saxena, Sohil Gadhiya , “A Survey on Frequent Pattern Mining Methods Apriori, Eclat, FP growth”, 2014 IJEDR | Volume 2,
Issue 1 | ISSN: 2321-9932 S.

10) Neelima, N. Satyanarayana and P. Krishna Murthy3,”A Survey on Approaches for Mining Frequent Itemsets”, IOSR Journal of Computer
Engineering (IOSR-JCE) e-ISSN: 2278-0661, p-ISSN: 2278-87.

11) Debajyoti Bera, and Rameshwar Pratap. Frequent-Itemset Mining using Locality-Sensitive Hashing[C]. Computing and Combinatorics:
22nd International Conference, 2016.

12) Xie Y, Palsetia D, Trajcevski G, et al. Silverback: Scalable association mining for temporal data in columnar probabilistic databases[C].
2014 IEEE 30th International Conference on Data Engineering. IEEE, 2014: 1072-1083.

No. Of
Records Apriori(Time) Eclat(Time) Hash DIC(Time)

1000 406 3074 297

2000 951 8729 469

3000 1197 20397 671

4000 1518 26450 771

5000 2268 33702 924

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812625 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1516

13) Ma Z, Yang J, Zhang T, et al. An Improved Eclat Algorithm for Minin Association Rules Based on Increased Search Strategy[J].
International Journal of Database Theory and Application, 2016, 9(5): 251-266.

14) A.M.J. Md. Zubair Rahman, P. Balasubramanie and P. Venkata Krihsna ―A Hash based Mining Algorithm for Maximal Frequent
Itemsets using Linear Probing‖. Infocomp Journal of Computer Science 2009, Vol.8, No.1, pp.14-19.

15) Hao Jiang,You-Jin LIAO, Shi-Meng NI, A New Algorithm for Mining Frequent Itemset Using Efficient Data Structure International
Conference on computer science and software engineering. 2014

16) Won D, McLeod D, An efficient approach to categorising association rules. International Journal of Data Mining, Modelling and
Management, pp. 309-333, 2012.

17) C. Zeng, J. F. Naughton, and J.-Y. Cai, “On differentially private frequent itemset mining,” Proc. VLDB Endowment, vol. 6, no. 1, pp. 25–
36, 2012.

18) Hongjian Qiu, Yihua Huang, Rong Gu, Chunfeng Yuan, "YAFIM: A Parallel Frequent Itemset Mining Algorithm with Spark", 2014 IEEE
28th International Parallel & Distributed Processing Symposium Workshops

19) www2.cs.uregina.ca/~dbd/cs831/notes/itemsets/DIC.html

20) www.justanswer.com/computer-programming/4np4s-data-mining-consists-five-major-elements-extract-transform.html

21) http://fimi.ua.ac.be/data/retail.dat

22) http://fimi.ua.ac.be/data/T10I4D100K.dat

http://www.ijcrt.org/
file:///E:/paper/datamining%20itemset%20algo/defination/report/www2.cs.uregina.ca/~dbd/cs831/notes/itemsets/DIC.html
file:///E:/paper/datamining%20itemset%20algo/defination/report/www2.cs.uregina.ca/~dbd/cs831/notes/itemsets/DIC.html
file:///E:/paper/datamining%20itemset%20algo/defination/report/www2.cs.uregina.ca/~dbd/cs831/notes/itemsets/DIC.html
http://www.justanswer.com/computer-programming/4np4s-data-mining-consists-five-major-elements-extract-transform.html
http://fimi.ua.ac.be/data/retail.dat
http://fimi.ua.ac.be/data/retail.dat
http://fimi.ua.ac.be/data/retail.dat
http://fimi.ua.ac.be/data/T10I4D100K.dat
http://fimi.ua.ac.be/data/T10I4D100K.dat

